Using Sim Smith to Improve Antenna Matching

Jim Brown K9YC k9yc@arrl.net http://audiosystemsgroup.com/publish.htm

The Objectives

- Eliminate antenna tuners
- Improve match to our rigs
- Minimize losses
- Improve operating efficiency
- Prepare for automatic switching

I wanted to replace these tuners that I also had to tune

With this switching that I can automate with band decoders

The Tools

- NEC Design Software
- Vector Network Analyzer
 or
- Vector Impedance Analyzer
- Sim Smith Design Software

The Process

- Measure an existing antenna or:
- Export antenna design from NEC
- Import data into Sim Smith, use it to design matching networks
 - -Stubs
 - -Matching sections

-Capacitors, inductors, transformers

About Analyzers

- <u>Vector</u> Analyzer includes phase
 –Needed for any design work
- Vector Impedance Analyzer (VIA)
 –Single Port
 - -Measures impedance (R + jX)
 - -Time Delay Reflectrometry (TDR)
 - Line length, cable quality, splices
 - Works even w/antenna connected

About Analyzers

- Vector <u>Network</u> Analyzer (VNA)
 - -Two port analysis
 - -Measures impedance, TDR, and
 - –Measures response <u>through</u> a network or system
 - Coax loss, velocity factor
 - Bandpass filter response
 - Coupling between antennas
 - Gain (loss) of networks and systems

Single Port Vector Analyzers

- AIM 4170 \$545, 180 MHz
- AIM UHF \$900 1 GHz
- Power AIM (Broadcasters) (\$3K)

<u>Two-Port</u> Vector <u>Network</u> Analyzers

- TenTec TAPR 100 MHz discontinued, works up to 120 MHz
- AIM VNA-2180 180 MHz \$1,500
- N2PK 60 MHz

M0WWA builds to order w/options

- DG8SAQ VNWA 3E 1.3GHz \$750
 - -Sold by SDR kits in the UK
 - -Cost includes shipping to US

Low Cost Vector Analyzers

- All use a Windows computer to process and display data
- All couple data via USB port
- All come with free software
- All come with calibration set
- DG8SAQ powers from USB port
- All others need DC power
- All export data in standard formats

My Choice – DG8SAQ VNWA 3E

- Self powered from USB port, easiest to set up in the field
- Full specs to 500 MHz, reduced dynamic range to 1.3 GHz
- Active Yahoo user group support
- Ongoing development of software, firmware, hardware by DG8SAQ

The DG8SAQ VNWA 3E

About the Smith Chart

- Developed by Phillip Smith in 1939
- A method of plotting R + jX data that allows graphical computations involving transmission lines
- Allows a "way of looking" at a problem that, with experience, suggests solutions
- A great <u>learning</u> tool

About the Smith Chart

- Impedances plotted on the chart are "normalized" to Zo
- <u>Normalized</u> means every data point is divided by the same value, in this case, Zo

Transmission Line Rotates Impedances Clockwise toward the Transmitter

Impedances Rotate Counter-Clockwise toward the Antenna

We know that a 90° (λ /4) line "inverts" the load impedance

Examples: a short becomes an open an open becomes a short inductive becomes capacitive

This Talk is About Sim Smith

- Software that graphs transmission line problems and solves them
- We plug in our circuit, Sim Smith does all the math, graphs the result
- Sim Smith makes it easy
- It's like NEC for transmission lines
- Runs in Java
- Let's look at Sim Smith

SWR and Loss View of a Model

80M Dipole Imported From NEC,

<<<	<<	<	>	>>	>>>

SWR View Zo = 50Ω

Series Resonant Circuit, $Zo = 75\Omega$

Impedance at 180° at 3740 kHz

"Leeson" 80M Dipole Matching

"Leeson" 80M Dipole Matching

One More Time Around (360°)

Designing Matching Networks

- We need to learn a bit more about the Smith Chart to design networks
- There are two versions of the Smith Chart
- The standard version works with impedance (Z = R + jX Ohms)
 - -Good for adding series reactance to a circuit
 - -Centers of circles are on the right

Two Versions of Smith Chart

- The inverted version works with admittance (Y = G +jB)
 - -Good for adding components in parallel in a circuit
- Centers of circles are on the left

Inverted Smith Chart for Admittance

Inverted Smith Chart for Admittance

SimSmith Has Circles For Both

And Always Uses the Right Ones

<<<	<<	<	>	>>	>>>
prev		closest		next	

steps	ps from		name
<	none>	clr	
399 lin	3.5	5 4	G.MHz

When matching, we want to end up at the center of the chart

Designing Simple Networks

- Adding reactance moves the impedance along the circles
- Series reactance moves Z along circles centered to the right
- Parallel reactance moves Z along circles centered to the left
 - -Capacitance moves Z downward
 - -Inductance moves Z upward

A Simple Problem, at Only One Frequency

- We have a 50 + j40 Ω load (it's inductive)
- We add a series capacitor
- Z moves along a right-centered circle, because it's a series cap

A Parallel Example

- Same 50+j40 Ω load (.0122 +j.0097 siemens)
- On a paper Smith Chart, we would turn the chart upside down and plot it as 0.61 + j .485
- We're used to thinking impedance, and there's a lot of trig in making that conversion

SimSmith to the Rescue

- We draw the circuit with R, L, C, stubs, transmission lines, etc.
- Sim Smith does all the math, plots everything in the right place, computes the right way, always displays the result in Ohms (the Impedance Smith Chart)

Our Simple Example

- Obviously, series C was the best solution for this network, but most matching stubs are connected in parallel
- We'll nearly always be following the left-centered circles

Back to Antennas

- We design antennas to cover an entire band, not just one frequency
- NEC designs and antenna measurements produce not just one point on the Smith Chart, but many points
- SimSmith plots those points as a curve for the frequency range we are interested in

Back to Antennas

- Each point on the curve follows it's own circle
- This can be tricky to visualize, so let's look at our 80M dipole

Back to Antennas

- Adding 110° of coax, we get the Red curve
- Adding the parallel capacitor we get the Blue curve

Stub Matching

- A stub is a short length of transmission line connected in parallel with the main transmission line
- An <u>open</u> stub <90° looks capacitive
- Find a point on the line where the impedance is inductive (the top half of the Smith Chart) and add an open stub
- Or add a shorted stub <90° at a point where impedance is capacitive (in the bottom half of the Smith Chart)

Simple Stub Matching

- Find a point on the transmission line where we can move along a left circle to bring the curve closer to the center
- Usually easiest to add a small length of line, but we can also move along the line toward the antenna
- Add a stub that moves the impedance
 - -Open stub to move down
 - -Shorted stub to move up
- Tweak position and stub for best SWR

Example – My 15M Yagi

- Home brew 4-element, I didn't get the match quite right, and it's up there
- A stub near the antenna will reduce SWR on the long run to the shack, also reducing cable loss
- There's a coax splice below the rotator, a good place for a stub
- I made a VNA measurement there

Smith Chart View of 15M Yagi, measured at junction below rotator

Add Coax To Rotate Impedance

Add Coax To Rotate Impedance

Add Open Stub

SWR View

Add 120' Coax To Reach Shack

SWR and Feedline Loss

Circuit For Stub

W6GJB's 80M Dipole In Shack

9/4/2012 5:16:45 PM W6GJB 80M Dipole

DG8SAQ Vector Network Analyzer Software

9/4/2012 5:12:34 PM W6GJB 80M Dipole Vf = 0.84

W6GJB's 80M Dipole

A Stub to Match for 75M SSB

- SWR too high for power amp to load above 3650 kHz
- Set Sim Smith display limits to 3650 – 3900 kHz (makes it easier to see what you're doing)
- Add length to make Z inductive
- Add open stub

Sim Smith Circuit for the Stub

Two Methods to Compute Loss

- Include impedance mis-match between transmitter and line (called "mismatch loss")
 - -Not really loss, simply less power transferred to line
- Ignore mis-match, assume some sort of antenna tuner is used, or that Zs is significantly less than Zo

When To Include Mis-Match Loss

- Most VHF/UHF systems
 - -The path between the output devices and the output terminals is quite likely to be matched
 - -The source is likely to be 50Ω
- When you <u>know</u> the source Z is really the same as Zo

When To Ignore Mis-Match Loss

- Any time an antenna tuner or matching network not part of the model is used to drive the line
- Any "tuned" power amp
- The source impedance, Zs, of most HF power amps, including transceiver output stages, is likely to be closer 25Ω than 50Ω

Maximum Power Transfer

- The classic theorem requiring
 - Z_L = the conjugate of Z_{SOURCE} applies to a variable <u>LOAD</u> impedance
- If Z_{SOURCE} is variable, maximum power transfer occurs when
 Z_{SOURCE} << Z_L

Maximum Power Transfer

- The maximum power transfer theorum was derived for linear circuits
- Impedance matching at power amp outputs is really a matter of providing an impedance that the output devices want to see
- That may or may not be
 - $Z_L = Z_{SOURCE}$

User Controls

Stubs for my JA Fan Dipole

Stubs for my EU/VK Fan Dipole

Tuners I Replaced (one more was added after photo)

Cost/Benefit Analysis – Benefits

- Antenna tuners are gone
- SWR <1.5:1 all bands
- Switching is simple, instantaneous
- Exactly resettable
- Much less clutter on operating desk, space above desk for P3 VGA
- Ready for YCCC "Mother of All Antenna Switches" to control it

Cost/Benefit Analysis – <u>Benefits</u>

- I had a lot of fun designing and building it (and learning things)
- I'll use the VNA to tune bandpass filter boxes
- The VNA is a big help in finding issues in the antenna system, and in evaluating products like relay boxes

Cost/Benefit Analysis – Costs

- Some good coax, ~ 200 ft
- Top Ten 1x6 switches (\$110 each)
- Connectors
 - -PL259s ~ \$3 each
 - -Tees, a few at ~ \$11 each
 - -Elbows, a few, ~ \$ 9 each
- Vector analyzer \$500 \$1,500
 - Lower cost units plenty good enough for HF work
 - -Or borrow one

Cost/Benefit Analysis – Savings

- Antenna tuners, manual switching
 - –I've already sold five for a total of about \$1,100
 - –I had ordered three of the new Elecraft tuners and am beta-testing one with my Titans, but I could live without them
 - -I'll keep the beta unit for CQP

Rules of Thumb for Matching

- Locate matching elements as close to the antenna as practical
 - -Generally yields a better match
 - -Reduces line loss by minimizing the length of line with high SWR
 - -Practical for monoband antennas
- Matching in the shack works fine too, and is easier to switch

Ideas for Matching

- Try a 75 Ω matching section in 50 Ω line for an antenna near resonance
 - -90°, 180° and multiples of 180°
 - -Add coax if needed to adjust length between 75Ω section and antenna so curve crosses the center horizontal (zero reactance line)

-Tweak lengths watching SWR at TX

$3\lambda/2 \text{ of } 75\Omega \text{ CATV Hard Line}$

Rules of Thumb for Matching

- Don't rule out a 75 ohm matching section with a tri-bander
- 2λ on 20M (117 ft of CATV hard line) is 3λ on 15M and 4λ on 10M
- I'm using 117 ft lengths of CATV hard line on my 20M and 15M monobanders, and may put one half that length on my 10M Yagi (because it's much closer)

Rules of Thumb for Stubs

- Try for an open stub first
 - -It's usually shorter for moderate mismatches
- Higher V_F coax requires more coax, but cutting errors will be lower
- Use good coax, but don't worry about small loss differences

Other Smith Chart Uses

- Smith charts can work for design of L – C networks too
- Many networks can be built with L and C or stubs, or even a mix
- BUT although stubs are "sort-of like" L and C, they are fundamentally different

How Stubs Are Different

- An open stub <90° is capacitive, but it's <u>capacitance varies with</u> <u>frequency</u>
- Likewise, the <u>inductance</u> of an <u>shorted</u> stub <90° also varies with frequency
- A stub or matching section that is 90° or 180° at some frequency F is 85.5° or 171° at 0.95x F

How Stubs Are Different

 These subtle differences often make one or the other kind of component a better choice for any given circuit

Thinking About Stubs and Antennas

- Near resonance, a half wave dipole (or quarter wave vertical) acts much like a series resonant circuit
- Near resonance, an open λ/4 stub or shorted λ/2 stub acts like much series resonant circuit
- Near resonance, a shorted λ/4 stub or open λ/2 stub acts much like a parallel resonant circuit

Thinking About Stubs and Antennas

- An open stub shorter than $\lambda/4$ looks capacitive, and can tune out inductance
- A shorted stub shorter than $\lambda/4$ looks inductive, and can tune out capacitance
- Stubs move impedance along leftcentered curves to, or away from, center of Smith chart

The Ultimate Matching Section

- Loss in <u>any</u> line causes the impedance to move closer to the center of the chart (lower SWR)
- High losses >>> low SWR
- 1,000 ft of RG58 makes almost any antenna look perfectly matched
 - -Approaches 1:1 for almost any load
 - -Burns 99% of the TX power at HF

The New Toy (Beta)

References

- SimSmith info, download http ://www.ae6ty.com/Smith_Charts.html
- SimSmith and Smith Chart Tutorial http://www.ae6ty.com/Papers_files/QRParticle.pdf
- SimSmith Primer http://www.ae6ty.com/Smith_Charts_files/SimSmith%20Primer.pdf
- Ward Silver, N0AX QST Dec '07, Jan '08, Feb '08 (Smith Charts) Nov '04, Nov '07 (Stubs)

http://www.arrl.org/hands-on-radio

- Jim Brown, K9YC Some Q&A on Coax and Stubs http://audiosystemsgroup.com/Coax-Stubs.pdf
- Steve Stearns, K6OIK, Mysteries of the Smith Chart http://archive.k6ya.org/docs/smith_chart.pdf

Using Sim Smith to Improve Antenna Matching

Jim Brown K9YC k9yc@arrl.net http://audiosystemsgroup.com/publish.htm