Design, Analysis, Construction, and Testing of a Portable Antenna for 80M

Jim Brown K9YC k9yc@arrl.net Glen Brown W6GJB 210glen@gmail.com

More Slides Than On USB Stick

- Don't bother taking notes
- Ray needed slides for USB stick a week before CQP, so I gave him what I had then
- These slides will be on my website in a few days

-k9yc.com/publish.htm

Design Objectives

- For locations with no skyhooks
- Easy for old men to set up
- Maximize signal strength east of the Mississippi (high population density)
 - -Maximize low angle radiation (< 25°)
 - -Closer stations need less radiation
- Better than a practical inverted Vee that we could easily rig
- Moderate cost
- Modest footprint

Design Inspiration

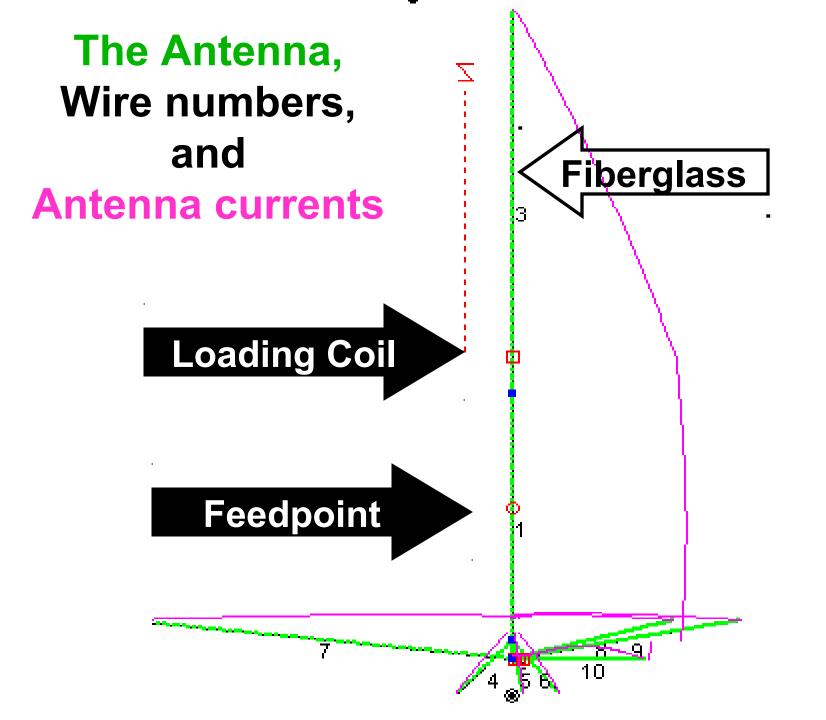
- Maximize Radiation Efficiency by...
 - -High Feedpoint
 - -Minimal Top Loading
 - -Minimize ground loss
- Tom Schiller, N6BT bottom loading
- Chip, K7JA surplus masts
- Barry Booth, W9UCW measurement of short loaded verticals (QEX Jan-Feb, Mar/Apr 2014)

Antenna Concept

- It's a shortened vertical dipole
- Make antenna as tall as practical
- Make feedpoint as high as practical
- Keep high current section as high as practical
- Use inductive loading for top section
- Use capacitive loading for bottom section (three horizontal wires)
- Vary loading to get 50Ω feedpoint Z

Design Process

- Start with surplus mast sections and tripod, with telescoping mast on top
 - -How high can we go with surplus mast sections?
 - -We set it up and tried it
 - Seven sections with 40 ft telescoping mast attached seems to be the limit
 - -71 ft total height
- How high can we place loading coil?
 Top of lowest fiberglass section



Early Feasibility Test

- W6GJB mounts fiberglass pole to 2-in mast section
- More 2-in mast sections will be added to make antenna taller

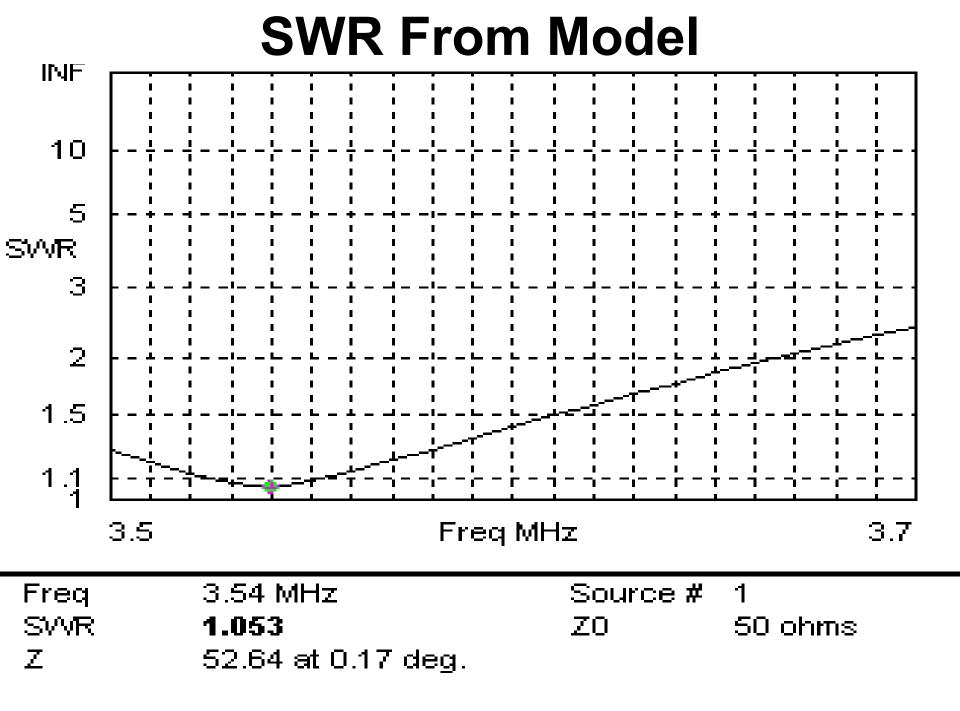
Design Process

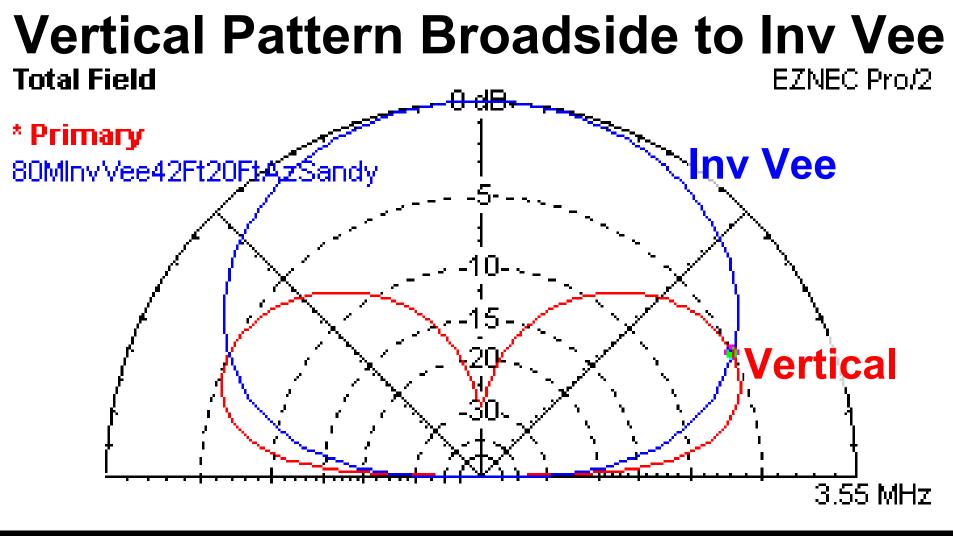
- What bottom loading?
 - Decided on horizontal wires attached at base (4 ft high)
- How high should the feedpoint be?
 - -At junction of sections (seven total)
 - -Three positions were modeled with both top and bottom loading optimized
 - -3, 4, and 5 sections below feedpoint
 - -Studied field strength and SWR for each position

NEC Data Entry

🐃 Wires											
Wire Create Edit Other											
🔟 Coord Entry Mode 🛛 🔲 Preserve Connections 🔲 Show Wire Insulation											
Wires											
	No.	End 1				End 2				Diameter	Segs
		X (ft)	Y (ft)	Z (ft)	Conn	X (ft)	Y (ft)	Z (ft)	Conn	(in)	
	1	0	0	5.854	W2E2	0	0	31.5	W3E1	2	49
	2	0	0	4	W7E1	0	0	5.854	W4E1	2	6
	3	0	0	31.5	W1E2	0	0	71.5		#14	80
	4	0	0	5.854	W5E1	5.65453	-1.51513	0.354		2	16
	5	0	0	5.854	W6E1	-1.51513	5.65453	0.354		2	16
	6	0	0	5.854	W1E1	-4.1394	-4.1394	0.354		2	15
	7	0	07	4	W8E1	38	0	8		#14	76
	8	0	0	4	W9E1	-19	32.909	8		#14	76
	9	0	0	4	W10E1	-19	-32.909	8		#14	76
	10	0	0	4	W2E1	0	-130	4		#14	200
*											

Design Process

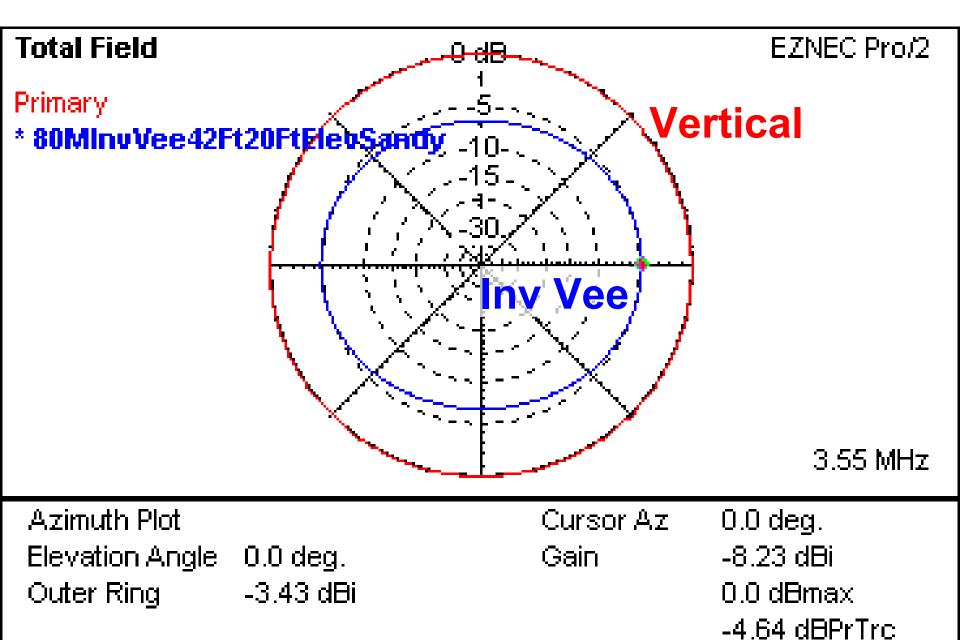

- Compared with reference antenna – Inv Vee, apex at 42 ft, ends at 20 ft
- All feedpoint heights beat the Inv Vee by at least 3 dB at low angles
- Final design uses 4 sections below feedpoint, 3 sections above
- Design is tweaked for CW
 - -100 kHz for SWR < 1.5:1, 200 kHz < 2:1
 - -Reduce both top and bottom loading to tune for SSB

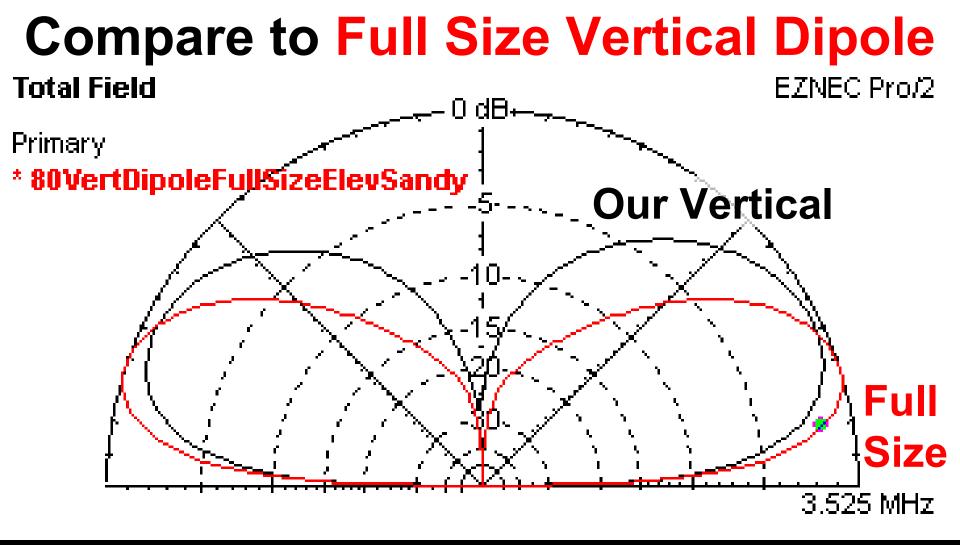

Optimization

- Bottom loading wires
 - -8 ft above ground at far end produced greatest signal strength
 - -< 8 ft increases ground loss, > 8 ft effectively shortens the radiator
 - -3 wires used, allowing guy wires to act as supports for the elevated ends

Optimization

- Varied top and bottom loading to achieve best match to 50Ω
 - -Less coil, longer bottom loading wires
 - -More coil, shorter bottom loading wires
- Design was tweaked for 3540 kHz
- Measured resonance was 3510 kHz
 - Easily moved up by shortening bottom loading wires




Elevation Plot Azimuth Angle 0.0 deg. Outer Ring 4.11 dBi Cursor Elev 26.0 deg. Gain -0.97 dBi

-0.04 dBmax

-0.19 dBmax3D

Polar Pattern at 10° Elevation

Elevation Plot Azimuth Angle 0.0 deg. Outer Ring -0.44 dBi Cursor Elev 10.0 deg. Gain -1.91 dBi -1.47 dBmax

1.56 dBPrTrc

Building It

Most of The Parts

4-Ft Mast Sections

- 4-inch mating section reduces effective length to 3 ft – 8 in
- 7 sections = 25 ft 3 in
- Center insulator = 18 in

Center Insulator – coax exits at bottom of 2-in mast, not perpendicular to antenna

Guy King

Delrin Base Insulators

Loading Coil

32 turns, #8 bare copper, tapped. Turns can be compressed or expanded for tuning

Jack, Tripod Fixture

Common Mode Chokes on Feedline

- Feedline is fed through center of lower dipole section
- No need for coax perpendicular to antenna
- Common mode chokes are used to decouple feedline from antenna
- Keeps RF off the coax
- At CQP, we run 600W, so multiple chokes are used to prevent destructive overheating
 - -7 turns on "largest #31 clamp-on"

Spiderbeam HD 12m fiberglass pole HEAVY DUTY professional telescopic pole (12m / 40ft) high strength fiberglass pole for quick portable wire antennas

Antenna Components

- 14 4-ft sections of 2-in o.d. surplus mast (3'- 8" when mated)
 - -6 sections in tripod base
 - -7 sections in vertical section
 - -1 section sacrificed to make center insulator
- Spiderbeam 40 ft telescoping fiberglass mast
- Tripod fitting
- Cylindrical insulating feet for tripod base

Antenna Components Loading coil,design value 13 uH – 32 turns #8 bare copper

- 154 ft #12 THHN (house wire)
 - -40 ft taped to fiberglass tube
 - -114 ft (three 38 ft outriggers)
- Rope to guy antenna at top of 2-in mast

Antenna Components

- RG8X from center insulator, fed through mast sections, wound onto ferrite cores
 - -RG8X used so more turns could fit through cores, making resonance low enough for good 80M suppression
- 2 Fair-Rite 1-in i.d. #31 "big clamp-ons" –We started with 3, two is enough
- Add RG213 for run to rig

- Set up tripod base
 - -Two sections in each leg
 - -Tape them together (plumber's tape)
 - –Insulators in each leg
- Place top section in base
- Add guy ring at top
- Mount loading coil to fiberglass mast

-36-ft wire to top of loading coil (heavy alligator clip allows adjustment)

- Mount fiberglass mast, w/wire attached, to top section of 2-in mast
 - -Extend it one section at a time
 - -Tape each section so it won't collapse
- Attach guy lines (antenna rope)

- When fiberglass mast is at full length, start adding 2-in mast sections
 - -Add below top of tripod base, push up
- Here's where the tower jack comes in handy

- When fiberglass mast is at full length, start adding 2-in mast sections
 - -Three sections, then center insulator
 - -Four more sections, feed coax thru them
 - -Bottom section has paint stripped
 - Bottom section has attachments for horizontal loading wires
- Bottom section should be 4-ft high

Erecting the Antenna

- Antenna will start to be "wobbly" with 3 - 4 of the 2-in mast sections raised
 - -Need someone on each guy line to maintain tension as it is raised to full height
- Tie off the guys when antenna is at full height
 - It helps to drive guy points before raising antenna
- Attach horizontal loading wires, rig them to guy lines

Erecting the Antenna

- Rig the common mode chokes on the feedline
 - -Make sure clamp-on clicks to lock
 - -Add ty-wrap to maintain the lock
- Connect to rig or antenna analyzer to check for resonance

Performance Testing

Performance Testing

- Set up both the vertical and an Inv Vee in a field about 50 ft apart
- Inv Vee apex @ 42 ft, ends about 20 ft
 –Ferrite common mode choke at feedpoint
- Used Reverse Beacon Network (RBN) to compare the antennas

W6GJB 42 Ft Pneumatic Mast Used to Support **Inverted Vee** (shown here on **Field Day** supporting a C3SS)

RBN Testing

- K3 was used with KPA500 amp (600W) and KAT500 tuner
- Difference between antennas can be less than normal QSB
- Propagation changes through the night
- Many data points must be averaged to reach a valid result
- Rule out interference between the antennas

RBN Test Method

- Compare two or more antennas via Reverse Beacon Networks spots...
 - -Over a short period of time
 - -With identical TX conditions
 - -Get multiple spots per RX station
- The most rigorous comparisons are obtained when more RX stations each spot (or fail to spot) both antennas multiple times over a short period of time

RBN Test Method

Assign a unique callsign to each antenna, then...

- 1.Send "TEST TEST callsign1" x3
- 2.Switch antennas
- 3.Send "TEST TEST callsign2" x3
- 4.QSY and repeat x5
- 5.Repeat different times, different nights

RBN Test Method

- RBN spots include S/N ratio
- Spots were entered in Excel, plotted vs. distance (from qrz.com)

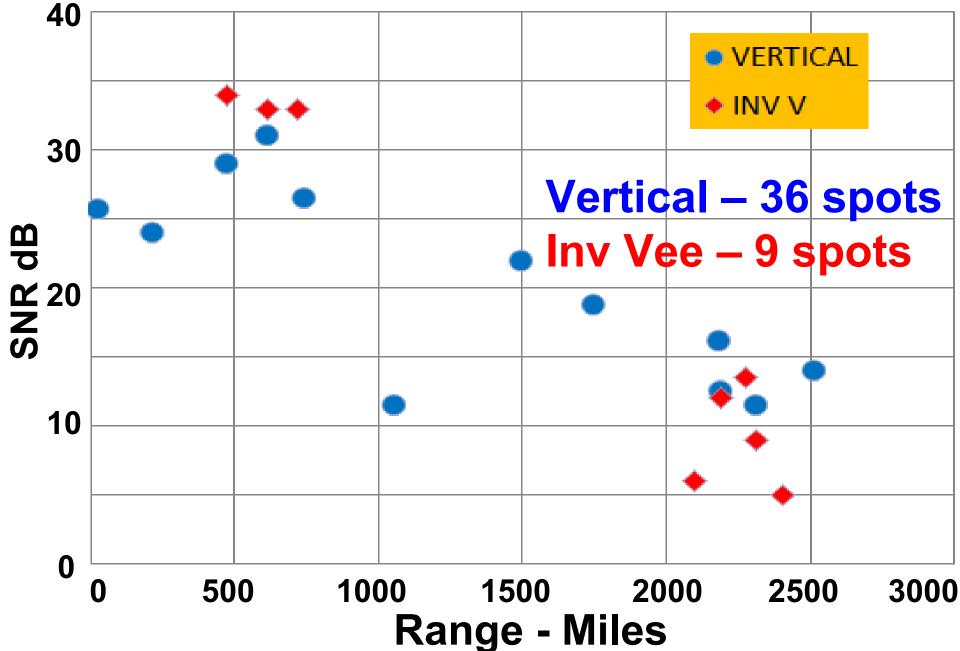
Interference Between Antennas

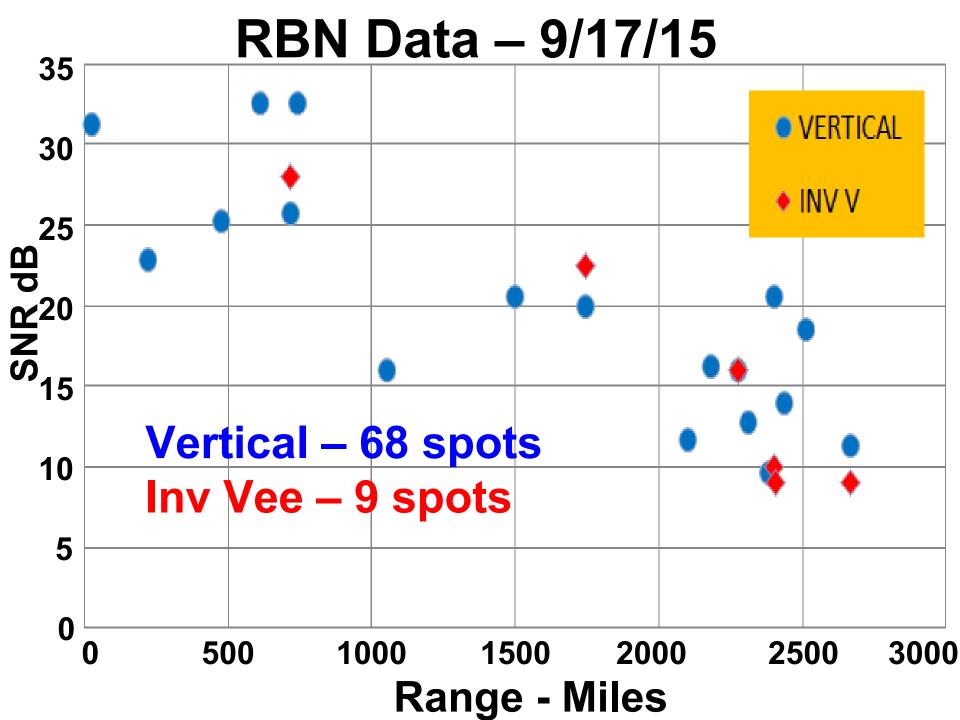
- First night testing showed poor performance of the vertical
- The vertical was set up near a steel tower trailer with a crankup tower mounted, raised to about 30 ft, and with a tribander on top

The Tower Trailer

Interference Between Antennas

 On a hunch, we lowered the tower, removed the tribander, rotated the tower so it was flat on the trailer, then resumed testing




The Tower Trailer

Resuming RBN Tests

- Without the tower trailer, the vertical was clearly working much better
 - -Many stations heard Vertical, but not Inv Vee
 - -Few stations heard Inv Vee, but not Vertical
- Also tried vertical with Inv Vee on the ground
 - -No difference in performance, so no interference from Inv Vee

RBN Data 9/15/15

Summary Of Results

- The antenna can easily be erected by old men, but five are required
 - -One on each guy line, two at the antenna
 - -The 40 ft fiberglass acts like a wet noodle
- The antenna works well
 - -At low angles, beats an Inv Vee with apex at 42 ft, ends at 20 ft
 - Enough high angle radiation to work closer stations

Summary Of Results

- No heating at all with three chokes
 - -Can be feedline length dependent
 - -Two is probably enough, and only one might be

Verticals and Ground Losses

Two Kinds of Ground Loss

- Loss under the antenna as the antennas fields (and current) return via lossy earth
 - -Radials reduce this loss by acting as a <u>shield</u> between antenna and the earth
 - -Current and field are in low resistance wires rather than high resistance soil
- Vertical dipoles have far less of this kind of loss – bottom half of dipole is the return for top half

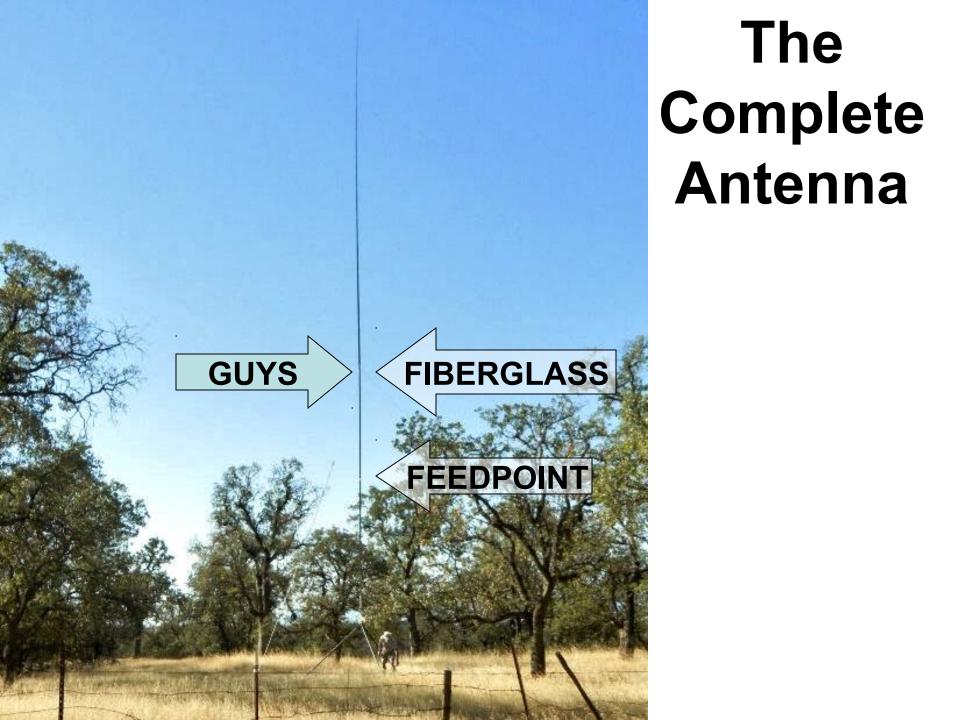
Two Kinds of Ground Loss

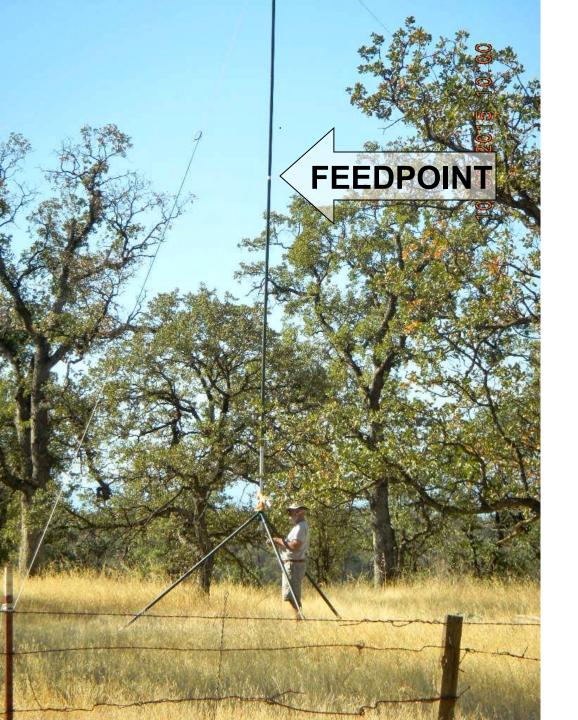
- Loss in the far field where the wavefront strikes the earth, is reflected, and added to the direct wave to produce the vertical pattern
 - -We can reduce this loss only by moving to a QTH with better soil!

Horizontal Antennas and Ground Loss

- Ground quality does <u>not</u> affect field strength from horizontal antennas
 - -2dB stronger high angle from Good ground
 - -No difference below 45 degrees
- Ground quality <u>does</u> affect feedpoint impedance of horizontal antennas

Effect of Ground Conductivity


- Model assumed Poor ground (Sandy)
- Testing done with Poor ground
- Tehama Co CQP site has Poor ground
- Vertical antennas work better with better (higher conductivity) ground
- This vertical will work even better than a horizontal dipole over good soil
 - -5.25 dB better over Poor ground
 - -6.75 dB better over Average ground
 - -10 dB better over Very Good ground


California QSO Party

- CQP (California QSO Party) was held the first weekend in October, and was the first planned use of this antenna
- Here are photos of setup at the site

Mounting Fiberglass Mast to Surplus Mast

Zooming In

And then it got windy

Spiderbeam Pole Broken in Wind

Spiderbeam HD 12m fiberglass pole HEAVY DUTY professional telescopic pole (12m / 40ft) high strength fiberglass pole for quick portable wire antennas

From The SpiderBeam Website

These are extremely strong poles, with a much greater wall thickness (up to 2mm!) than the usual "fishing rod" types. A special reinforcing winding technique - several layers of fiberglass are wound in alternating direction (criss/cross winding) - provides greatly increased lateral and linear strength.

The Failed Spiderbeam Mast

What Went Wrong?

- Spiderbeam failed to deliver what they advertised – a specially reinforced mast with criss/cross windings, and a bottom section with 2mm wall thickness
- The section that broke, the bottom section, had a wall thickness of only 1.75mm, and it did <u>NOT</u> have reinforcing criss/cross winding(s)

The Failed SpiderBeam Mast

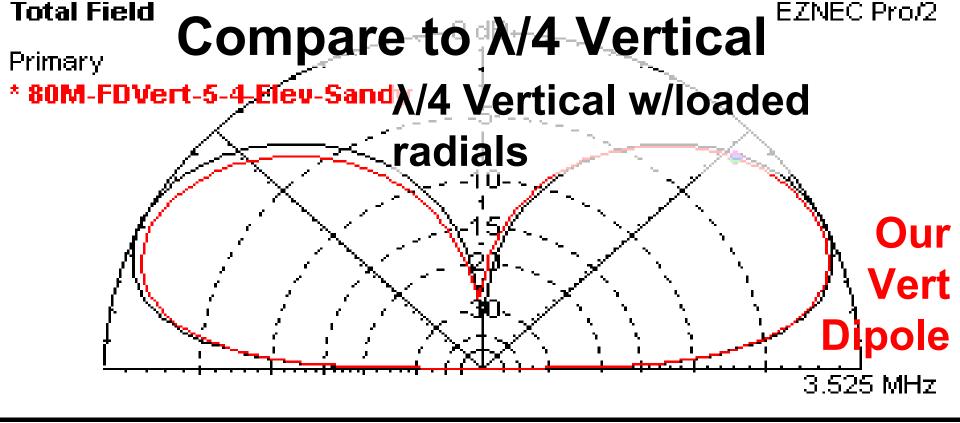
Back to the Drawing Board!

- For several years, we have used a 40M dipole made by mounting two 31-ft Jackite poles to a fitting that W6GJB made to attach to the top of the same surplus mast sections, with #12 THHN taped to the poles
- This antenna survived the same winds with no damage, and has always performed well
- These poles ARE reinforced at their base, cost is \$80 each

The 40M Dipole

The 40M Dipole

- NEC computes the field strength of our loaded 80M dipole as 0.4 dB less than a full size λ/4 vertical with 4 radials elevated 6 ft SO ---
- Maybe we've made it too complicated!
- Forget about the vertical dipole
- Forget about the SpiderBeam pole
- Build a λ/4 vertical using our surplus mast sections and a Jackite pole


- Mount a 31 ft Jackite pole to the top of 9 sections of surplus mast, add a 16µh coil to resonate it
- Guy at top of surplus mast sections
- Add 4 $\lambda/4$ (67 ft) radials elevated 6 ft
 - -Elevating radials reduces ground loss
 - -67 ft too long to fit in available space
 - -Add loading coil to each radial
- NEC predicts 28 Ω feedpoint Z
- We'll need a simple matching network

- Reinforce the SpiderBeam pole and stick with the vertical dipole design
- Big advantage 38 ft bottom loading wires barely fit in the available footprint, easy to rig to guy lines
- No matching network needed

- Build one or the other, leave it up for a season to see how it survives the elements
- Do some more RBN performance testing

Things We Learned

- Our half-size dipole, with all the things we did to maximize efficiency, turned out to be λ/4 tall
- Performance (field strength and pattern) models almost identically to simple λ/4 "ground plane" with low loss radial system

Elevation Plot		Cursor Elev	43.0 deg.
Azimuth Angle	10.0 deg.	Gain	-2.08 dBi
Outer Ring	-0.55 dBi		-1.3 dBmax
			-0.22 dBPrTrc
3D Max Gain	-0.55 dBi		
Slice Max Gain	-0.78 dBi @ Elev Angle = 26.0 deg.		
Beamwidth	43.4 deg.; -3dB @ 9.3, 52.7 deg.		
Sidelobe Gain	-1.09 dBi @ Elev Angle = 154.0 deg.		
Front/Sidelobe	0.31 dB		

Things We Learned

- Tape on joints is not sufficient to prevent pole sections from loosening in the wind
- Don't believe everything you read on the website of any company selling ham gear
 - -"We've sold thousands"
 - -"Used by major DXpeditions" usually means they were donated

Wait 'til next year!

Design, Analysis, Construction, and Testing of a Portable Antenna for 80M

Jim Brown K9YC k9yc@arrl.net Glen Brown W6GJB 210glen@gmail.com