43 Ft Verticals – What's the Big Deal?

Jim Brown K9YC k9yc@arrl.net http://k9yc.com/publish.htm

What I Wanted To Learn

- How does it work?
- What are strengths and weaknesses?
- If I can mount one on my roof, should I do it?
- What about radials?
- Is it really an "all band" antenna?

Don't Bother Taking Notes

 pdf of these slides is on my website k9yc.com/publish.htm

The 43 Ft Vertical

- Is designed to be a ground-mounted antenna with on-ground radials
- Is advertised as covering all bands 160-10M

Let's Review How Verticals Work

Let's Review How Verticals Work

 The transmitter feeds a vertical conductor, with the coax shield connected to radials

Why Radials?

- Earth is a relatively poor conductor
 that is, it's a (very big) resistor
- Even the best connection to earth is bad for an antenna – it drives current to that lossy earth
- Current in lossy earth burns transmitter power (P_G = I²R_G)
 <u>before</u> it can be radiated

Why Radials?

- An ideal radial system:
 - <u>shields</u> the antenna from the earth
 - provides a path for return <u>current</u>
 - Provides a return path for fields produced by the antenna

Why Radials?

- With no radials, the outside of the coax forms a single radial
 - It's better than nothing, but not very effective
 - It does not shield the antenna from lossy earth
 - And it can put RF in the shack

Guidelines for Radials

- Insulated wire holds up longer
- #18 minimum size for durability
 - Large spools hard to buy
- #14 THHN (house wire) works well
 - Mass market items often less expensive and easy to find

On-Ground Radial Systems

- Four λ/4 radials per band for multiband vertical (N6LF)
- <u>Symmetry</u> is good, but most radial systems must be shorter in some directions because they run into buildings, roads, property lines

How Earth Affects Verticals

- Power is <u>lost</u> in earth <u>very near</u> the antenna <u>before it can be radiated</u>
 - -Radials reduce this loss
 - -Radials make the most difference with poor soil

How Earth Affects Verticals

- Radiated signal is <u>reflected</u> by the earth <u>far</u> from the antenna
 - -Reflection adds to direct signal
 - -Shapes the vertical pattern
 - -Better soil helps low angle most
- Radials don't help the <u>reflection</u>, but they strengthen the radiated signal that gets reflected

Vertical Pattern

What Kind of Soil Do I Have?

- Most of the Bay Area has "Average" soil
- Some of the North Bay and the fertile valleys have "Good" soil
- Desert and rocky areas have "Poor" to "Very Poor" soil

Vertical Antenna Efficiency – It's All About Resistance

- Radiation resistance (R_R) is the part of the feedpoint impedance that accounts for <u>radiated</u> power
- R_R mostly determined by vertical height of the radiator
- R_R is "good" resistance, more is better

Resistance Matters

 Ground resistance (R_G) combines with wire resistance (R_W) to burn transmitter power

Ground Resistance

- Depends on the nature of the earth around the antenna
 - We can't change it except by moving
- Depends on the radial system
- Make R_G smaller by using
 - more radials and longer radials
 - a good counterpoise
 - a ground screen

Typical Loss Resistances

- R_W for 43 ft Al tubing ~ 0.2 ohm
- R_G ranges from 2 4 Ω for a great radial system to 20 Ω for a poor one
- So ignore R_W and concentrate on trying to make R_G smaller and R_R larger

R_R, Electrical Length, Ground Loss (assumes 10 ohm radial system)

- A 43 Ft vertical
 - On 160M, 0.08 λ , so R_R = 2.7 Ω , -13 dB
 - On 80M, 0.16 λ , so R_R = 12.7 Ω , -2.5 dB
 - On 40M, 0.32 λ , so R_R = 93 Ω , -0.9 dB
- Losses can be reduced with a better radial system

What About the Vertical Pattern?

- How does it compare to a quarter-wave vertical?
- How does it compare to a roof-mounted multi-band vertical dipole?
- Let's study the vertical radiation pattern on each band

Vertical Radiation Patterns

- Models of two 43 ft antennas were constructed using W7EL's EZNEC (NEC2)
 - Simple 43-ft monopole with 10 Ω radial system (~32 on-ground wire radials)
 - Simple 43-ft monopole with base at 33 ft, with two resonant radials each for 40M, 20M, 15M, and 10M (not easy to build)
- Compare with quarter-wave groundmounted vertical with 10 Ω radial system

My Method

- All antennas were modeled over six soil types
 - Very poor cities, industrial
 - Poor rocky, mountainous
 - Average pastoral, heavy clay
 - Pastoral, rich soil, US Midwest
 - Very good, central US
 - Salt water

What Soil Do We Have?

- Most of us in Northern California have soil on the poor side of average – rocky, sandy, urban
- California farmland and rolling grassy hills are probably between average and a bit better than average
- Some soil may be a bit better in rainy season, poorer when it's dried out
- Skin depth of soil can be 5-50 ft (depends on frequency and soil), so changes in surface moisture may not have much effect

My Method

- As a separate study, I also modeled several resonant vertical antenna types
- Those antenna were modeled
 - over the same six soil types
 - on 40M, 20M, and 10M
 - on the ground and at several heights representative of roof mounting
- This work was shown yesterday as part of the Antenna Forum

What I Learned

- Mounting almost any HF vertical in the range of $\lambda/4 \lambda/2$ above ground improves performance for most soil conditions
- Greatest improvement with the poorest soil
 - Near field ground losses are reduced
 - Making the feedpoint higher increases radiation at low angles (good for DX)
- With increasing height, higher angle lobes develop, more pronounced for better soil
 - Nulls at intermediate elevation angles between the lobes

What I Learned

- A 43 ft vertical
 - below 17M, is a pretty decent radiator if it has a good radial system
 - Much better than average on 20M 5/8 λ
 - Is a cloud-warmer above 20M
 - Is quite difficult to match
 - High SWR on most bands
 - Requires a serious tuner
 - Works 2-3 dB better at roof level <u>if</u> it has at least 2 radials per band (not easy)

Vertical Radiation Patterns

- Reference trace is $\lambda/4$ vertical at ground level, resonant on each band
- 43 ft vertical is at ground level
- Both are modeled over MiniNEC Average ground with 10Ω ground loss

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-4.24 dBi
Outer Ring	-0.44 dBi		-2.3 dBmax
			-1.72 dBPrTrc

Zo = 14.5 – j 220 SWR 70:1

Elevation Plot		Cursor Elev	11.0 deg.
Azimuth Angle	0.0 deg.	Gain	-2.44 dBi
Outer Ring	-0.58 dBi		-1.86 dBmax
			0.78 dBPrTrc

Zo = 95 + j 195 SWR 10:1

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-1.83 dBi
Outer Ring	-0.08 dBi		-1.75 dBmax
			2.11 dBPrTrc

Zo = 1050 + j 570 SWR 27:1

Elevation Plot		Cursor Elev	11.0 deg.
Azimuth Angle	0.0 deg.	Gain	0.61 dBi
Outer Ring	1.23 dBi		-0.62 dBmax
			4.23 dBPrTrc

Zo = 80 – j 300 SWR 26:1

Elevation Plot		Cursor Elev	11.0 deg.
Azimuth Angle	0.0 deg.	Gain	-2.66 dBi
Outer Ring	3.95 dBi		-6.61 dBmax
			1.01 dBPrTrc

Zo = 43.1 + j 20.9 SWR 1.6:1

Elevation Plot		Cursor Elev	11.0 deg.
Azimuth Angle	0.0 deg.	Gain	-4.47 dBi
Outer Ring	3.72 dBi		-8.19 dBmax
			-0.79 dBPrTrc

Zo = 645 – j 374 SWR 17:1

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-4.75 dBi
Outer Ring	4.12 dBi		-8.87 dBmax
			-0.62 dBPrTrc

Zo = 165 – j 355 SWR 19:1

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-5.16 dBi
Outer Ring	5.33 dBi		-10.49 dBmax
			-1.06 dBPrTrc

Zo = 62.7 – j 2.5 SWR 1.2:1

Antenna Current on 10M

It's Not An Easy Antenna to Feed

SWR In 50Ω System

EZNEC Pro/2

Add A 4:1 Transformer (Unun)

EZNEC Pro/2

INF					
	Num				1111
10	144444				분분님
	1	· · · · · T*+_L · · · · · · · · · · · · · · · · · · ·			
- 5	իսփոս	upourroù.	LECOTECOTE	<u>ura co</u> nte	JIII I
വസര്		,		T	
	Luuiu		i Ni i jerni i		, i i i l
J					
~					
2					17 7 6
4 5					
I.J	10000				1111
1					<u>11 1 1 1</u>
I		_			
	3.5	Fre	⊧q MHz		- 30

R_R , SWR, Loss in 10 Ω Radial System

Band	Z _O = 50Ω	Z _O = 200Ω	R _R	Loss
160	> 100:1	> 100:1	2.7 Ω	– 13.5 dB
80	70:1	19:1	12.7 Ω	– 2.5 dB
40	10:1	4:1	93 Ω	- 0.9 dB
30	27:1	7:1	1,090 Ω	0 dB
20	21:1	7.5:1	779 Ω	0 dB
17	5.3:1	2.9:1	90 Ω	- 0.9 dB
15	17.5:1	4.1:1	665 Ω	– 0.07 dB
12	18:1	5.5:1	162 Ω	– 0.26 dB
10	1.7:1	2.7:1	63 Ω	– 0.7 dB

How To Match It on 40M – 10M

- Add 1:4 transformer at antenna
- Run big coax to the shack
 - 60 ft good RG213 or LMR400 < 0.7dB
 - Use a good tuner in the shack
- Or buy dedicated tuner from antenna manufacturer (expensive)

How To Match It on 160M and 80M

- Add loading coils, one for each band
 - Use relays at feedpoint to switch between coils and transformer
 - Use a good tuner in the shack
- Or buy dedicated tuner from antenna manufacturer (expensive)
- See AD5X's solutions
 - http://www.ad5x.com

How About Roof-Mounting?

- Reference trace is 43 ft vertical at ground level
- Blue trace is 43 ft vertical at 33 ft, with two-each radials for 40M, 20M, 15M, and 10M

Elevation Plot		Cursor Elev	10.0 deg.	
Azimuth Angle	0.0 deg.	Gain	-0.61 dBi	
Outer Ring	0.17 dBi		-0.78 dBmax	
			1.93 dBPrTrc	
	-	-		

On the ground and on the roof, average soil

1.25 dBPrTrc

On the ground and on the roof, average soil

On the ground and on the roof, average soil

Are There Better Solutions?

- Put a multi-band vertical dipole on your roof, no radials needed
- Roof-mounting reduces ground losses, increases low-angle radiation

Some Multi-band Vertical Dipoles

- Antennas rated for legal limit
 - Cushcraft R-8 covers 40M 6M (very good in N0AX/K7LXC tests)
 - Cushcraft R-9 covers 80M 6M (newer than N0AX/L7LXC tests)
 - Gap Titan covers 80M 10M (was poor on 80M and 10M in N0AX/K7LXC tests)
 - Hy-Gain AV-640 covers 40M-6M (700W)
- Antennas rated for 200W
 - Force 12 Sigma GT-5 covers 20M 10M

N6BT End-Loaded 20M Vertical Dipole

Plack is 12 f	Vartical	an around	100 radiala
			3.06 dBPrTrc
Outer Ring	0.06 dBi		-2.11 dBmax
Azimuth Angle	0.0 deg.	Gain	-2.04 dBi
Elevation Plot		Cursor Elev	10.0 deg.

Black is 43 ft Vertical on ground, 10 Ω radials **Red is loaded vertical dipole** @ 25 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-0.66 dBi
Outer Ring	0.73 dBi		-1.39 dBmax
			2.22 dBPrTrc

Black is 43 ft Vertical on ground, 10 Ω radials Red is loaded vertical dipole @ 25 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-0.85 dBi
Outer Ring	0.31 dBi		-1.16 dBmax
			1.63 dBPrTrc
Black is 43 f	t Vertical o	n ground,	10 Ω radials

Red is loaded vertical dipole @ 25 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	-0.26 dBi
Outer Ring	0.58 dBi		-0.84 dBmax
			1.16 dBPrTrc

Black is 43 ft Vertical on ground, 10 Ω radials Red is loaded vertical dipole @ 25 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	1.81 dBi
Outer Ring	2.17 dBi		-0.36 dBmax
			1.02 dBPrTrc

Black is 43 ft Vertical on ground, 10 Ω radials Red is loaded vertical dipole @ 25 ft

Elevation Plot		Cursor Elev	5.0 deg.
Azimuth Angle	0.0 deg.	Gain	-2.54 dBi
Outer Ring	1.42 dBi		-3.97 dBmax
			0.49 dBPrTrc

Black is 43 ft Vertical on ground 10Ω radials Red is N6BT end-loaded vertical dipole @20 ft Blue is N6BT end-loaded vertical dipole @33 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	1.05 dBi
Outer Ring	1.99 dBi		-0.95 dBmax
			0.86 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is N6BT end-loaded vertical dipole @20 ft Blue is N6BT end-loaded vertical dipole @33 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	3.36 dBi
Outer Ring	3.59 dBi		-0.23 dBmax
			7.6 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is $\lambda/2$ vertical dipole @ 30 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	2.19 dBi
Outer Ring	3.74 dBi		-0.5 dBmax
			7.15 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is $\lambda/2$ vertical dipole @ 30 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	1.61 dBi
Outer Ring	3.93 dBi		-1.43 dBmax
			6.44 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is $\lambda/2$ vertical dipole @ 30 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	3.04 dBi
Outer Ring	5.45 dBi		0.0 dBmax
			8 07 dBPrTro

Black is 43 ft Vertical on ground 10Ω radials Red is 10M vertical dipole @30 ft Blue is 10M ground plane @33 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	4.31 dBi
Outer Ring	4.7 dBi		0.0 dBmax
			7 58 dBPrTrc

Black is 43 ft Vertical on ground 10Ω radials Red is 10M vertical dipole @30 ft Blue is 10M ground plane @33 ft

Elevation Plot		Cursor Elev	11.0 deg.
Azimuth Angle	0.0 deg.	Gain	2.42 dBi
Outer Ring	2.72 dBi		-0.3 dBmax
			1.82 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is $\lambda/2$ vertical dipole @33 ft Blue is N6BT end-loaded vertical dipole @33 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	1.1 dBi
Outer Ring	2.04 dBi		-0.94 dBmax
			0.7 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is $\lambda/2$ vertical dipole @33 ft Blue is N6BT end-loaded vertical dipole @33 ft

Elevation Plot		Cursor Elev	10.0 deg.
Azimuth Angle	0.0 deg.	Gain	0.3 dBi
Outer Ring	2.51 dBi		-2.21 dBmax
			0.18 dBPrTrc

Black is 43 ft Vertical on ground, 10Ω radials Red is $\lambda/2$ vertical dipole @33 ft Blue is N6BT end-loaded vertical dipole @33 ft

Re-Cap

- As compared to other compact multiband verticals, a 43-ft vertical
 - Is difficult to match on nearly all bands
 - A good performer on 80, 60, 40, 30, 20M
 - Requires a very good radial system for good performance
 - Becomes a high angle radiator above 20M
 - Works better on 40-10M if roof mounted with two resonant radials per band
 - Is relatively inexpensive, but matching is complex and expensive

Re-Cap

- A good roof-mounted multi-band vertical dipole is
 - As good or better on 40M and 20M
 - A superior DX performer above 20M
 - Much easier to match
 - More expensive for the antenna, but little or no cost to match to transmitter
 - Weak on 80M, next to useless on 160M
- Antennas using traps typically underperform those without traps

An Easy to Build End-Fed Single-Band Vertical Dipole

Feedpoint

Dipole Center

The Dipole Rigged From Support Rope for an 80M Dipole

A More Robust Choke For Higher Power

These Chokes Handle 1.5kW On a 40M Vertical Dipole

Recommended Study

- Get NEC or 4NEC and learn to use it! These antennas are <u>very</u> simple to model.
- HF Vertical Performance Test Methods and Results, Ward Silver, N0AX, and Steve Morris, K7LXC, Champion Radio Products, 2000 championradio.com
- Rudy Severns' website http://www.antennasbyn6lf.com/
- ARRL Antenna Book
- Antenna Modeling for Beginners, Ward Silver, N0AX, ARRL

43 Ft Verticals – What's the Big Deal?

Jim Brown K9YC k9yc@arrl.net http://k9yc.com/publish.htm